Abstract

We have studied the reflection spectra of opal photonic crystals with air-or ethanol-filled pores at different diameters of the silica spheres. An experimental technique has been proposed which enables identification of both the first and second photonic band gaps in the reflection spectrum of opal. The ability to observe the second band gap allowed us to derive a dispersion relation for the refractive index of the infiltrated substance. The calculations were performed using a model for a one-dimensional periodic layered medium with two refractive indices. We obtained ω(k) dispersion curves for electromagnetic waves in a photonic crystal (at normal incidence). The ω(k) dispersion law was used to find a dispersion relation for the reflectance of the photonic crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.