Abstract

A normal form theory for functional differential equations in Banach spaces of retarded type is addressed. The theory is based on a formal adjoint theory for the linearized equation at an equilibrium and on the existence of center manifolds for perturbed inhomogeneous equations, established in the first part of this work under weaker hypotheses than those that usually appear in the literature. Based on these results, an algorithm to compute normal forms on finite dimensional invariant manifolds of the origin is presented. Such normal forms are important in obtaining the ordinary differential equation giving the flow on center manifolds explicitly in terms of the original functional differential equation. Applications to Bogdanov-Takens and Hopf bifurcations are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call