Abstract
This paper contains theory on two related topics relevant to manifolds of normally hyperbolic singularities. First, theorems on the formal and \( C^k \) normal forms for these objects are proved. Then, the theorems are applied to give asymptotic properties of the transition map between sections transverse to the centre-stable and centre-unstable manifolds of some normally hyperbolic manifolds. A method is given for explicitly computing these so called Dulac maps. The Dulac map is revealed to have similar asymptotic structures as in the case of a saddle singularity in the plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.