Abstract

The implicit operation ω is the unary operation which sends each element of a finite semigroup to the unique idempotent contained in the subsemigroup it generates. Using ω there is a well-defined algebra which is known as the free aperiodic semigroup. In this article we introduce a specific and rather elementary list of pseudoidentitites, we show that for each n, the n-generated free aperiodic semigroup is defined by this list of pseudoidentities, and then we use this identification to show that it has a decidable word problem. In the language of implicit operations, this shows that the pseudovariety of finite aperiodic semigroups is κ-recursive. This completes a crucial step towards showing that the Krohn–Rhodes complexity of every finite semigroup is decidable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.