Abstract

We study adaptive dynamics strategy functions by defining a form of equivalence that preserves key properties of these functions near singular points (such as whether or not a singularity is an evolutionary or a convergent stable strategy). Specifically, we compute and classify normal forms and low codimension universal unfoldings of these functions. These calculations lead to a classification of local pairwise invasibility plots that can be expected in systems with two parameters. This problem is complicated because the allowable coordinate changes at such points are restricted by the specific nature of strategy functions; hence the needed singularity theory is not the standard one. We also show how to use the singularity theory results to help study a specific adaptive game: a generalized hawk—dove game studied previously by Dieckmann and Metz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.