Abstract

A general mathematical framework is presented to describe local equivalence classes of multipartite quantum states under the action of local unitary and local filtering operations. This yields multipartite generalizations of the singular value decomposition. The analysis naturally leads to the introduction of entanglement measures quantifying the multipartite entanglement (as generalizations of the concurrence and the 3-tangle), and the optimal local filtering operations maximizing these entanglement monotones are obtained. Moreover a natural extension of the definition of GHZ-states to e.g. $2\times 2\times N$ systems is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.