Abstract

Though orogen‐parallel shortening and vertical extension have dominated the tectonic evolution of the central Andes, a significant kinematic shift from horizontal contraction to extension appears to have occurred within the high Puna‐Altiplano Plateau, with the establishment of extension oblique to the orogen since late Miocene time. We present data from the southern margin of the Puna Plateau, NW Argentina, where new normal faults have been documented in the Fiambalá, Punta Negra, and La Quebrada areas. The unifying characteristics of these areas are that young normal faults reactivate or crosscut older thrust and reverse faults. The relationship between the faults and the late Miocene–Pliocene Punaschotter conglomerate suggests that the extensional faulting must be younger than 3.5 to 7 Ma. Existing data are incomplete but indicate that similar horizontal extension has occurred in many regions throughout the Puna‐Altiplano Plateau, while shortening continues along the plateau margins. Given the spatial and temporal distribution of this late Miocene to Pliocene kinematic shift, both lithospheric loss in the Puna Plateau and plateau‐wide gravitational extensional spreading enhanced by slowing of plate convergence rate could be responsible. The young, disorganized, horizontal extension in the Andes today may be the precursor to more pronounced extension such as observed on the Tibetan Plateau since mid‐Miocene time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.