Abstract

Surface microseismic arrays enable long-term field-scale monitoring over multiple stimulations during the life of an unconventional field. In this study, we show highly economic methods of monitoring with sparse surface arrays in the Barnett Shale and develop an alternatative method of processing to enable good vertical and horizontal resolution of located events. We show that sparse surface monitoring arrays enable not only the detection and location of high numbers of microseismic events but also source mechanism characterization. This case study illustrates how hydraulic fracturing activated normal faulting at a distance of approximately 1 mile from stimulated wells. We show that the source mechanism enables us to resolve between newly created hydraulic fractures and activated faults. The differences in source mechanisms and b-values of newly created fractures and activated faults are consistent with independently processed temporary star-like arrays, which are also deployed over the same stimulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.