Abstract
The paper is devoted to the normal families of meromorphic functions and shared functions. Generalizing a result of Chang (2013), we prove the following theorem. Let h (≠≡ 0,∞) be a meromorphic function on a domain D and let k be a positive integer. Let F be a family of meromorphic functions on D, all of whose zeros have multiplicity at least k + 2, such that for each pair of functions f and g from F, f and g share the value 0, and f(k) and g(k) share the function h. If for every f ∈ F, at each common zero of f and h the multiplicities mf for f and mh for h satisfy mf ≥ mh + k + 1 for k > 1 and mf ≥ 2mh + 3 for k = 1, and at each common pole of f and h, the multiplicities nf for f and nh for h satisfy nf ≥ nh + 1, then the family F is normal on D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.