Abstract

When two rough surfaces contact under normal static and dynamic forces, the contact damping is an important parameter for the vibration reduction. In this paper, a normal contact damping model is built by the statistical method, which involves the asperity shoulder-to-shoulder contact and interaction of adjacent asperities. Furthermore, the effects of the normal static force, vibration frequency and amplitude of mean separation on the normal contact damping are studied, respectively. Comparing contact damping of some classical models with the results of the proposed model, the effects of the asperity shoulder-to-shoulder contact and interaction can be revealed. According to the final conclusions, an appropriate normal contact damping can be obtained through changing the normal static force, frequency and amplitude of the mean separation, which has significance in some extent for the machine tool vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.