Abstract

AbstractWe prove that any circulant graph of order n with connection set S such that n and the order of ℤ(S), the subgroup of ℤ that fixes S set‐wise, are relatively prime, is also a Cayley graph on some noncyclic group, and shows that the converse does not hold in general. In the special case of normal circulants whose order is not divisible by 4, we classify all such graphs that are also Cayley graphs of a noncyclic group, and show that the noncyclic group must be metacyclic, generated by two cyclic groups whose orders are relatively prime. We construct an infinite family of normal circulants whose order is divisible by 4 that are also normal Cayley graphs on dihedral and noncyclic abelian groups. © 2005 Wiley Periodicals, Inc. J Graph Theory

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call