Abstract

If X is a smooth hypersurface in complex projective space, the Fano variety of lines on X is stratified by the splitting type of the normal bundle of the line. We show that for general hypersurfaces, these strata have the expected dimension and, in this case, compute the class of the closure of the strata in the Chow ring of the Grassmannian of lines in projective space. For certain splitting types, we also provide upper bounds on the dimension of the strata that hold for all smooth X.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.