Abstract
Stein's method for normal approximations is explained, with some examples and applications. In the study of the asymptotic distribution of the sum of dependent random variables, Stein's method may be a very useful tool. We have attempted to write an elementary introduction. For more advanced introductions to Stein's method, see Stein (1986), Barbour (1997) and Chen (1998).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.