Abstract

We consider a sequence of strong demimartingales. For these random objects, a central limit theorem is obtained by utilizing Zolotarev’s ideal metric and the fact that a sequence of strong demimartingales is ordered via the convex order with the sequence of its independent duplicates. The CLT can also be applied to demimartingale sequences with constant mean. Newman (1984) conjectures a central limit theorem for demimartingales but this problem remains open. Although the result obtained in this paper does not provide a solution to Newman’s conjecture, it is the first CLT for demimartingales available in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.