Abstract
AbstractGiven a graph sequence denote by T3(Gn) the number of monochromatic triangles in a uniformly random coloring of the vertices of Gn with colors. In this paper we prove a central limit theorem (CLT) for T3(Gn) with explicit error rates, using a quantitative version of the martingale CLT. We then relate this error term to the well‐known fourth‐moment phenomenon, which, interestingly, holds only when the number of colors satisfies . We also show that the convergence of the fourth moment is necessary to obtain a Gaussian limit for any , which, together with the above result, implies that the fourth‐moment condition characterizes the limiting normal distribution of T3(Gn), whenever . Finally, to illustrate the promise of our approach, we include an alternative proof of the CLT for the number of monochromatic edges, which provides quantitative rates for the results obtained in [7].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.