Abstract

In this work, we study the normal approximation and almost sure central limit theorems for some functionals of an independent sequence of Rademacher random variables. In particular, we provide a new chain rule that improves the one derived by Nourdin et al. (2010) and then we deduce the bound on Wasserstein distance for normal approximation using the (discrete) Malliavin–Stein approach. Besides, we are able to give the almost sure central limit theorem for a sequence of random variables inside a fixed Rademacher chaos using the Ibragimov–Lifshits criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.