Abstract

BackgroundAnimal studies have shown that shear deformation of myocardial sheets in transmural planes of left ventricular (LV) wall is an important mechanism for systolic wall thickening, and normal and shear strains of the LV free wall differ from those of the interventricular septum (IVS). We sought to test whether these also hold for human hearts.MethodsThirty healthy volunteers (male 23 and female 7, aged 34 ± 6 years) from Outpatient Department of the University of Tokyo Hospital were included. Echocardiographic images were obtained in the left decubitus position using a commercially available system (Aloka SSD-6500, Japan) equipped with a 3.5-MHz transducer. The ECG was recorded simultaneously. The peak systolic radial normal strain (length change), shear strain (angle change) and time to peak systolic radial normal strain were obtained non-invasively by two-dimensional speckle tracking echocardiography.ResultsThe peak systolic radial normal strain in both IVS and LV posterior wall (LVPW) showed a trend to increase progressively from the apical level to the basal level, especially at short axis views, and the peak systolic radial normal strain of LVPW was significantly greater than that of IVS at all three levels. The time to peak systolic radial normal strain was the shortest at the basal IVS, and increased progressively from the base to the apical IVS. It gradually increased from the apical to the basal LVPW in sequence, especially at short axis views. The peak of radial normal strain of LVPW occurred much later than the peak of IVS at all three levels. For IVS, the shear deformation was clockwise at basal level, and counterclockwise at mid and apical levels in LV long-axis view. For LVPW, the shear deformations were all counterclockwise in LV long-axis view and increased slightly from base to the apex. LVPW showed larger shear strains than IVS at all three levels. Bland-Altman analysis shows very good agreement between measurements taken by the same observer and by two independent observers.Conclusion“Myocardial sheets” theory also holds true for intact human LV. Moreover, dyssynchrony exists even in healthy human subjects, which should be considered when evaluating the diseased hearts.

Highlights

  • Assessment of regional left ventricular (LV) function is essential for the evaluation and management of patients with heart disease, and it is of great importance to know how the normal LV behaves before we make a diagnosis of cardiac dysfunction

  • We evaluated the radial normal strain, which refers to the wall thickness change in the radial direction perpendicular to the endocardium of a given segment, and shear strain, which refers to the angle change of the line between the endocardium and epicardium of a given segment, in the LV free wall (LVPW) and interventricular septum (IVS) of healthy subjects, with 2D speckle tracking echocardiography

  • This study showed that the “myocardial sheets” theory was applicable in healthy human subjects, and significant differences of peak systolic radial normal strain, time to peak systolic radial normal strain as well as shear strain existed between LV posterior wall (LVPW) and IVS even in healthy human subjects

Read more

Summary

Introduction

Assessment of regional left ventricular (LV) function is essential for the evaluation and management of patients with heart disease, and it is of great importance to know how the normal LV behaves before we make a diagnosis of cardiac dysfunction. When the length of the object is known before and after deformation and during the deformation process, it is called instantaneous strain. When the instantaneous deformation is expressed relative to the initial length, it is called Lagrangian strain; if the reference value is not constant over time but changes during the deformation process, it is called natural strain [11]. Animal studies have shown that shear deformation of myocardial sheets in transmural planes of left ventricular (LV) wall is an important mechanism for systolic wall thickening, and normal and shear strains of the LV free wall differ from those of the interventricular septum (IVS). We sought to test whether these hold for human hearts

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call