Abstract

One way to study the mechanism of gravel bed load transport is to seed the bed with marked gravel tracer particles within a chosen patch and to follow the pattern of migration and dispersal of particles from this patch. In this study, we invoke the probabilistic Exner equation for sediment conservation of bed gravel, formulated in terms of the difference between the rate of entrainment of gravel into motion and the rate of deposition from motion. Assuming an active layer formulation, stochasticity in particle motion is introduced by considering the step length (distance traveled by a particle once entrained until it is deposited) as a random variable. For step lengths with a relatively thin (e.g., exponential) tail, the above formulation leads to the standard advection‐diffusion equation for tracer dispersal. However, the complexity of rivers, characterized by a broad distribution of particle sizes and extreme flood events, can give rise to a heavy‐tailed distribution of step lengths. This consideration leads to an anomalous advection‐diffusion equation involving fractional derivatives. By identifying the probabilistic Exner equation as a forward Kolmogorov equation for the location of a randomly selected tracer particle, a stochastic model describing the temporal evolution of the relative concentrations is developed. The normal and anomalous advection‐diffusion equations are revealed as its long‐time asymptotic solution. Sample numerical results illustrate the large differences that can arise in predicted tracer concentrations under the normal and anomalous diffusion models. They highlight the need for intensive data collection efforts to aid the selection of the appropriate model in real rivers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.