Abstract

In this work we study the transition from normal to anomalous diffusion of Brownian particles on disordered potentials. The potential model consists of a series of “potential hills” (defined on a unit cell of constant length) whose heights are chosen randomly from a given distribution. We calculate the exact expression for the diffusion coefficient in the case of uncorrelated potentials for arbitrary distributions. We show that when the potential heights have a Gaussian distribution (with zero mean and a finite variance) the diffusion of the particles is always normal. In contrast, when the distribution of the potential heights is exponentially distributed the diffusion coefficient vanishes when the system is placed below a critical temperature. We calculate analytically the diffusion exponent for the anomalous (subdiffusive) phase by using the so-called “random trap model”. Our predictions are tested by means of Langevin simulations obtaining good agreement within the accuracy of our numerical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.