Abstract

Although gastrointestinal colonization by the opportunistic fungal pathogen Candida albicans is generally benign, severe systemic infections are thought to arise due to escape of commensal C. albicans from the gastrointestinal (GI) tract. The C. albicans transcription factor Efg1p is a major regulator of GI colonization, hyphal morphogenesis, and virulence. The goals of this study were to identify the Efg1p regulon during GI tract colonization and to compare C. albicans gene expression during colonization of different organs of the GI tract. Our results identified significant differences in gene expression between cells colonizing the cecum and ileum. During colonization, efg1(-) null mutant cells expressed higher levels of genes involved in lipid catabolism, carnitine biosynthesis, and carnitine utilization than did colonizing wild-type (WT) cells. In addition, during laboratory growth, efg1(-) null mutant cells grew to a higher density than WT cells. The efg1(-) null mutant grew in depleted medium, while WT cells could grow only if the depleted medium was supplemented with carnitine, a compound that promotes the metabolism of fatty acids. Altered gene expression and altered growth capability support the ability of efg1(-) cells to hypercolonize naïve mice. Also, Efg1p was shown to be important for transcriptional responses to the stresses present in the cecum environment. For example, during colonization, SOD5, encoding a superoxide dismutase, was highly upregulated in an Efg1p-dependent manner. Ectopic expression of SOD5 in an efg1(-) null mutant increased the fitness of the efg1(-) null mutant cells during colonization. These data show that EFG1 is an important regulator of GI colonization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.