Abstract

The notion of conjugate functions associated with ultraspherical expansions and their continuous analogues, the Hankel transforms, was introduced by Muckenhoupt and Stein [14], to which we refer the reader for general background and an excellent discussion of the motivation underlying these notions. The operation of passing from a given function to its conjugate is in many ways analogous to the passage from a function to its Hilbert transform, indeed, Muckenhoupt and Stein proved, among other things, that these operations acting on appropriate weighted Lebesgue spaces, Lp(𝝁), satisfy inequalities of M. Riesz type analogous to those satisfied by the Hilbert transform on the usual Lebesgue spaces, Lv( — ∞, ∞).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.