Abstract
Throughout this paper X will denote a complex Banach space and all operators T will be assumed to be continuous linear transformations from X into X. If T is an operator then ┘(T), γ(T), and R(T) will denote the spectrum of T, the spectral radius of T, and range of T, respectively. This paper contains necessary and sufficient conditions for the (norm) convergence of {Tn} when T is an operator on X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.