Abstract

We study the sup-norm bound (both individually and on average) for Eisenstein series on certain arithmetic hyperbolic orbifolds producing sharp exponents for the modular surface and Picard 3-fold. The methods involve bounds for Epstein zeta functions, and counting restricted values of indefinite quadratic forms at integer points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.