Abstract

Norisoboldine (NOR), an alkaloid isolated from Radix Lindera, was previously reported to promote the differentiation of regulatory T cells (Treg cells), an important subtype of lymphocytes capable of controlling autoimmune diseases. The present study was performed to explore the mechanism of NOR in the view of cellular metabolism. A global metabolomic analysis indicated that NOR preferentially altered the fatty acid oxidation (FAO) pathway and elevated the content of related metabolites during Treg cell differentiation. The detection of oxygen consumption rate (OCR) and mRNA expression of FAO-related enzymes demonstrated that NOR promoted FAO in the early stage of Treg cell differentiation. Consistently, pharmacological or genetic inhibition of FAO markedly diminished the induction of NOR on Treg cell differentiation. Furthermore, NOR was shown to elevate the level of acetyl-CoA derived from FAO and acetylation of lysine 27 on histone 3 (H3K27) at the Foxp3 promoter and CNS2 regions. A knockdown of CPT1, the rate-limiting enzyme of FAO, weakened the promotion of NOR on the development, acetyl-CoA level, and acetylation of H3K27 of Treg cells in vitro and in the mice with collagen-induced arthritis, and attenuated the anti-arthritic effect of NOR. These findings demonstrate that NOR induces the development of Treg cells through promoting FAO, therefore, facilitating gene transcription of Foxp3 via acetyl-CoA-mediated H3K27 acetylation modification, and FAO might serve as a novel target to induce Treg cell development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call