Abstract

Norflurazon, an inhibitor of carotenoid synthesis, is a pre-emergent herbicide that prevents growth of weeds. The norflurazon is known to hamper embryo development in non-mammals. However, specific toxic effects of norflurazon on mammalian maternal and fetal cells have not been elucidated. Thus, the hypothesis of this study is that norflurazon may influence the toxic effects between maternal and fetal cells during early pregnancy in pigs. We aimed to examine the toxic effects of norflurazon in porcine trophectoderm (Tr) and uterine luminal epithelium (LE) cells. Norflurazon, administered at 0, 20, 50 or 100 μM for 48 h was used to determine its effects on cell proliferation and cell-cycle arrest. For both uterine LE and Tr cell lines, norflurazone caused mitochondrial dysfunction by inhibiting mitochondrial respiration and ATP production, and down-regulated expression of mRNAs of mitochondrial complex genes. Norflurazon increased cell death by increasing intracellular calcium and regulating PI3K and MAPK cell signaling pathways, as well as endoplasmic reticulum (ER) stress, ER-mitochondrial contact, and autophagy-related target proteins. Norflurazone also inhibited expression of genes required for implantation of blastocysts, including SMAD2, SMAD4, and SPP1. These findings indicate that norflurazon may induce implantation failure in pigs and other mammals through adverse effects on both Tr and uterine LE cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call