Abstract

The total (THC) and differential haemocyte counts (DHC), phenoloxidase (PO) activity, and prophenoloxidase (proPO) system-related genes were investigated in haemocytes of Litopenaeus vannamei that received saline, norepinephrine (NE), and NE co-treated with various adrenergic receptor (AR) antagonists both in vivo and in vitro. Results showed that semi-granular and granular cells of shrimp which received NE, NE + phentolamine (Phe), NE + prazosin (Pra), NE + propanolol (Pro) and NE + metoprolol (Met) significantly decreased, while the PO activity of the shrimp received NE + Phe in vivo was significant higher than all the other treatments. PO activities of haemocytes exposed to saline, Pra + NE, and Met + NE were significantly higher than those of haemocytes exposed to NE, Phe + NE, and Pro + NE in vitro. Similar phenomena in lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP), proPO-I, proPO-II, serine proteinases (SP), and peroxinectin (PE) messenger (m)RNA expressions of haemocytes exposed to saline, NE, and NE co-treated with various AR antagonists were observed both in vivo and in vitro. No significant differences were observed for LGBP and proPO-II mRNA expressions between haemocytes treated with saline and Pra + NE, for proPO-I mRNA expression between haemocytes treated with saline and Met + NE; or for SP and PE mRNA expressions among haemocytes treated with saline, Pra + NE, and Met + NE. These results suggest that stress-induced NE may promote the migration of circulating granulocytes to the site of the injection and the existing proPO mRNA translation which had been stored in granulocytes. NE downregulated the LGBP, proPO-I, proPO-II, SP, and PE gene transcription by haemocytes via α1-, β1-, α1-, α1- and β1-, and α1- and β1-ARs, respectively, which subsequently decreased the PO activity by α1- and β1-ARs in haemocytes of L. vannamei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.