Abstract

This study provides new information about the relative importance of calcium mobilization and entry in the renal vascular response to adrenoceptor activation in afferent arterioles isolated from 7- to 8-wk-old Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Intracellular free calcium concentration ([Ca(2+)](i)) was measured in microdissected arterioles utilizing ratiometric photometry of fura 2 fluorescence. There was no significant strain difference in baseline [Ca(2+)](i). Norepinephrine (NE; 10(-6) and 10(-7) M) elicited immediate, sustained increases in [Ca(2+)](i). The general temporal pattern of response to 10(-6) M NE consisted of an initial peak and a maintained plateau phase. The response to NE was partially blocked by nifedipine (10(-6) M) or 8-(N,N-diethylamino) octyl-3,4,5-trimetoxybenzoate (TMB-8; 10(-5) M). A calcium-free external solution abolished the sustained [Ca(2+)](i) plateau response to NE, with less influence on the peak response. In the absence of calcium entry, TMB-8 (10(-5) M) completely blocked the calcium response to NE in WKY but not SHR, suggesting strain differences in mobilization. A higher concentration of TMB-8 (10(-4) M), however, blocked all discernible mobilization in both strains. We conclude that there are differences in Ca(2+) handling in renal resistance vessels between young WKY and SHR with respect to mobilization stimulated by alpha-adrenoceptors. Afferent arterioles of young SHR appear to have a larger inositol-1,4,5-trisphosphate-sensitive pool or release from a site less accessible to TMB-8.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call