Abstract

The effects of norepinephrine (NE) on inhibitory synaptic potentials were studied on CA1 pyramidal neurons in the hippocampal slice in vitro. Norepinephrine caused the appearance of multiple population spikes in the CA1 region of the hippocampal slice, reminiscent of the actions of γ-aminobutyric acid (GABA) antagonists. Intracellular recording revealed that NE causes a marked and reversible reduction in inhibitory postsynaptic potentials (IPSPs) recorded in CA1 pyramidal cells. This reduced IPSP results in a larger intracellular excitatory postsynaptic potential (EPSP), which can cause the cell to fire more than one action potential. This disinhibitory effect of NE appears to be mediated by an α-receptor, and occurs at a site presynaptic to the pyramidal cell, since NE does not change the reversal potential of the IPSP nor does it affect the amplitude or the reversal potential of iontophoretic GABA responses. In addition to reducing evoked IPSPs. NE causes an increase in the frequency of spontaneous IPSPs, suggesting that inhibition of interneuronal firing may not account for this disinhibitory action of NE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.