Abstract

Perforated patch clamp recording was used to study the control of membrane potential (V(m)) and spontaneous electrical activity in the rat pinealocyte by norepinephrine. Norepinephrine did not alter spiking frequency. However, it was found to act through α(1B)-adrenoreceptors in a concentration-dependent manner (0.1-10 μM) to produce a biphasic change in V(m). The initial response was a hyperpolarization (∼13 mV from a resting potential of -46 mV) due to a transient (∼5 sec) outward K(+) current (∼50 pA). This current appears to be triggered by Ca(2+) released from intracellular stores, based on the observation that it was also seen in cells bathed in Ca(2+)-deficient medium. In addition, pharmacological studies indicate that this current was dependent on phospholipase C (PLC) activation and was in part mediated by bicuculline methiodide and apamin-sensitive Ca(2+)-controlled K(+) channels. The initial transient hyperpolarization was followed by a sustained depolarization (∼4 mV) due to an inward current (∼10 pA). This response was dependent on PLC-dependent activation of Na(+)/Ca(2+) influx but did not involve nifedipine-sensitive voltage-gated Ca(2+) channels. Together, these results indicate for the first time that activation of α(1B)-adrenoreceptors initiates a PLC-dependent biphasic change in pinealocyte V(m) characterized by an initial transient hyperpolarization mediated by a mixture of Ca(2+)-activated K(+) channels followed by a sustained depolarization mediated by a Ca(2+)-conducting nonselective cation channel. These observations indicate that both continuous elevation of intracellular Ca(2+) and sustained depolarization at approximately -40 mV are associated with and are likely to be required for activation of the pinealocyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.