Abstract
Provisioning the stereoscopic 3D (S3D) video transmission services of admissible quality in a wireless environment is an immense challenge for video service providers. Unlike for 2D videos, a widely accepted No-reference objective model for assessing transmitted 3D videos that explores the Human Visual System (HVS) appropriately has not been developed yet. Distortions perceived in 2D and 3D videos are significantly different due to the sophisticated manner in which the HVS handles the dissimilarities between the two different views. In real-time video transmission, viewers only have the distorted or receiver end content of the original video acquired through the communication medium. In this paper, we propose a No-reference quality assessment method that can estimate the quality of a stereoscopic 3D video based on HVS. By evaluating perceptual aspects and correlations of visual binocular impacts in a stereoscopic movie, the approach creates a way for the objective quality measure to assess impairments similarly to a human observer who would experience the similar material. Firstly, the disparity is measured and quantified by the region-based similarity matching algorithm, and then, the magnitude of the edge difference is calculated to delimit the visually perceptible areas of an image. Finally, an objective metric is approximated by extracting these significant perceptual image features. Experimental analysis with standard S3D video datasets demonstrates the lower computational complexity for the video decoder and comparison with the state-of-the-art algorithms shows the efficiency of the proposed approach for 3D video transmission at different quantization (QP 26 and QP 32) and loss rate (1% and 3% packet loss) parameters along with the perceptual distortion features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.