Abstract
The distortion measurement plays an important role in panoramic image processing. Most measurement algorithms judge the panoramic image quality by means of weighting the quality of the local areas. However, such a calculation fails to globally reflect the quality of the panoramic image. Therefore, the multi-region adjacent pixels correlation (MRAPC) is proposed as the efficient feature for no-reference panoramic images quality assessment in this paper. Specifically, from the perspective of the statistical characteristics, the differences of the adjacent pixels in panoramic image are proved to be highly related to the degree of distortion and independent of image content. Besides, the difference map has limited pixel value range, which can improve the efficiency of quality assessment. Based on these advantages, the proposed MRAPC feature collaborates with the support vector regression to globally predict the quality of panoramic images. Extensive experimental results show that the proposed no-reference panoramic image quality assessment algorithm achieves higher evaluation performance than the existing algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.