Abstract

The effects of norbornene (NE) crosslinking and diamine bridge linkages (ether, sulfone, and trifluoromethyl) on polyimide films were investigated. The purpose of this study was to study the behavior of the NE endcapped polyimide with different diamine bridge linkage structure at elevated temperatures on residual stress and modulus change. 5-Norbornene-2,3-dicarboxylic acid was introduced as the end-capping agent in order to increase the ratio of crosslinking in the structure through reverse Diels-Alder reaction. Wide angle X-ray diffraction (WAXD) was measured to study the relation of d-spacing and structure change of the bridge linkage of polymers through NE crosslinking. Coefficient of thermal expansion (CTE) and residual stress were measured to confirm the loaded stress between the substrate and polymer film through a thin film stress analyzer (TFSA). Storage (e′) and loss modulus (e″) were studied at elevated temperatures to study the relation of bridge linkage mobility of the polyimide at elevated temperature. Open image in new window

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call