Abstract

Solution-processable copolymers with pendant phosphorescent iridium complexes and 2,7-di(carbazol-9-yl)fluorene-type host moieties were synthesized using ruthenium-catalyzed ring-opening metathesis polymerization. Low polydispersity indices and molecular weights around 20 000 Da were obtained for all copolymers. As a result of the living character of the polymerization of the monomer containing the host moiety, a high degree of control over the molecular weights of all copolymers can be obtained. The photo- and electroluminescence properties of the copolymers were investigated. All copolymers retained the photo- and electrophysical properties of the corresponding nonpolymeric iridium complexes. Furthermore, as a proof of principle for the potential use of these materials, organic light-emitting devices were fabricated using the orange-emitting copolymer. A maximum external quantum efficiency of 1.9% at 100 cd/m2 and a turn-on voltage of 3.7 V were obtained with photoluminescence quantum yield of 0.10 demo...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call