Abstract

Repeated administration of the tricyclic antidepressant, desipramine, for 28 days to mice effected a decrease in the potency of glycine to displace [ 3H]5,7-dichlorokynurenic acid (5,7-DCKA) in mouse cortical homogenates. Pre-treatment with the noradrenergic neurotoxin DSP-4, while having no effect alone, attenuated the desipramine-induced effect. The present findings support a norepinephrine-dependent adaptation of the NMDA receptor complex in vivo following chronic desipramine treatment. The inter-relationship of norepinephrine and glutamate transmission may provide insight into the mechanism underlying the action of antidepressant drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.