Abstract

The LPBN (lateral parabrachial nucleus) plays an important role in feeding control. CGRP (calcitonin gene-related peptide) LPBN neurons activation mediates the anorectic effects of different gut-derived peptides, including amylin. Amylin and its long acting analog sCT (salmon calcitonin) exert their anorectic actions primarily by directly activating neurons located in the area postrema (AP). A large proportion of projections from the AP and the adjacent nucleus of the solitary tractNTS to the LPBN, are noradrenergic (NA), and amylin-activated NAAP neurons are critical in mediating amylin's hypophagic effects. Here, we determine the functional role of NAAP amylin activated neurons to activate CGRP and non-CGRP LPBN neurons. To this end, NA was specifically depleted in the rat LPBN through a stereotaxic microinfusion of 6-OHDA, a neurotoxic agent that destroys NA terminals. While amylin (50μg/kg) and sCT (5μg/kg) reduced eating in sham-lesioned rats, no reduction in feeding occurred in NA-depleted animals. Further, the amylin-induced c-Fos response in the LPBN and c-Fos/CGRP colocalization were reduced in NA-depleted animals compared to controls. We conclude that AP→LPBN NA signaling, through the activation of LPBN CGRP neurons, mediates part of amylin's hypophagic effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.