Abstract

Inhibition of brainstem cholinergic neurons by noradrenergic neurons of the locus ceruleus has long been suggested as a key mechanism of behavioral state control. In particular, the commonly held view is that noradrenaline (NA) plays a permissive role in rapid eye movement (REM) sleep generation by disinhibiting brainstem cholinergic neurons. While this notion has been supported by numerous investigations, the inhibition of cholinergic neurons by NA has never been directly demonstrated. The purpose of this study was to investigate the effects of NA upon identified cholinergic neurons in the rat mesopontine tegmentum. Using whole-cell patch-clamp recordings in slices, 175 cells were studied during bath application of 50 microM NA. Cholinergic neurons were positively identified by intracellular labeling with biocytin and subsequent staining with NADPH-diaphorase, a reliable marker for brainstem cholinergic neurons (Vincent et al., 1983). Successful intracellular labeling was obtained in 96 cells. Ninety-two percent (36 of 39) of cholinergic neurons hyperpolarized in response to NA, while noncholinergic cells (n = 57) exhibited mixed responses. Application of NA in a low-Ca2+, high-Mg2+ solution elicited the same hyperpolarizing effect as in normal solution, which indicated that the effect of NA on cholinergic neurons was direct. The noradrenergic hyperpolarization was mimicked by the alpha 2-adrenoceptor agonist UK-14,304, and was blocked by the alpha 2-adrenoceptor antagonist idazoxan, which suggested an alpha 2-mediated response. Finally, voltage-clamp experiments revealed that NA activates the inwardly rectifying potassium current, IKG.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.