Abstract
Subarachnoid Hemorrhage (SAH) is a cerebrovascular disorder that has been found to have severe consequences, including a high mortality and disability rate. Research has indicated that neuronal death, particularly apoptosis, plays a major role in the neurological impairment that follows SAH. RNA-binding protein Pum2 can interfere with translation or other biological functions by connecting to the UGUAHAUA sequence on RNA. Noncoding RNA activated by DNA damage (Norad) contains some Pum2 recognition sequences, which may bind to Pum2 protein and affect its capacity to attach to target mRNA. The time course expression of Norad and Pum2 after SAH is analyzed by establishing a mouse SAH model. Subsequently, the purpose of this study is to investigate the potential role and mechanism of the Norad-Pum2 axis after SAH using lentivirus overexpression of Pum2 and knockdown of Norad. Analysis of Pum2 and Norad levels reveal that the former is significantly reduce and the latter is significantly increased in the SAH group compared to the sham group. Subsequent overexpression of Pum2 and Norad knockdown is found to reduce SAH-induced oxidative stress, neuronal apoptosis, and ultimately improve behavioral and cognitive changes in SAH mice. Our study indicates that Norad-Pum2 acts as a neuromodulator in SAH, and that by increasing Pum2 and decreasing Norad levels, SAH-induced neuronal apoptosis can be reduced and neurological deficits alleviated. Consequently, Norad-Pum2 may be a promising therapeutic target for SAH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.