Abstract

Several viruses, including picornaviruses, are known to establish persistent infections, but the mechanisms involved are poorly understood. Here, a novel picorna-like virus, Nora virus, which causes a persistent infection in Drosophila melanogaster, is described. It has a single-stranded, positive-sense genomic RNA of 11879 nt, followed by a poly(A) tail. Unlike other picorna-like viruses, the genome has four open reading frames (ORFs). One ORF encodes a picornavirus-like cassette of proteins for virus replication, including an iflavirus-like RNA-dependent RNA polymerase and a helicase that is related to those of mammalian picornaviruses. The three other ORFs are not closely related to any previously described viral sequences. The unusual sequence and genome organization in Nora virus suggest that it belongs to a new family of picorna-like viruses. Surprisingly, Nora virus could be detected in all tested D. melanogaster laboratory stocks, as well as in wild-caught material. The viral titres varied enormously, between 10(4) and 10(10) viral genomes per fly in different stocks, without causing obvious pathological effects. The virus was also found in Drosophila simulans, a close relative of D. melanogaster, but not in more distantly related Drosophila species. It will now be possible to use Drosophila genetics to study the factors that control this persistent infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.