Abstract

The objective of this study was to evaluate the resin-ceramic adhesion of a long-carbon-chain silane (LCSI)-containing resin cement. Polished lithium disilicate ceramic discs were etched with hydrofluoric acid and randomly assigned into four groups; (PSAP), cemented using a silane-free resin cement with no prior priming; (PSAP-S), primed using a silane-containing primer before cementation using a silane-free resin cement; (PSAU), cemented using a LCSI-containing resin cement with no prior priming; (PSAU-S), primed as for the group (PSAP-S) and cemented using a LCSI-containing resin cement. The cemented blocks were sectioned into microbeams. The resin-ceramic microtensile bond strength (μTBS) was measured at 1 week and after thermocycling. The failure modes of the tested microbeams were evaluated. The μTBS of the LCSI-containing and silane-free resin cements, either with or without a prior priming step, did not significantly differ. The adhesion of the LCSI-containing resin cement to lithium disilicate ceramic, either with or without a prior priming step, did not significantly deteriorate after artificial aging. The long-carbon-chain silane (LCSI) monomer incorporated in the resin cement eliminated the need for a silane priming step of a hydrofluoric acid-etched lithium disilicate ceramic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.