Abstract
In this paper, we consider two-person nonzero-sum discrete-time stochastic games under the probability criterion. Taking $$\lambda $$ for player 1 and $$\mu $$ for player 2 as their profit goal, the two players are concerned with the probabilities that the rewards they earn before the first passage to some target state set are more than $$\lambda $$ and $$\mu $$, respectively. We firstly give a characterization of the probabilities, and then, under a mild condition, we show that the optimal value function for each player is the unique solution to the corresponding optimality equation by an iterative approximation, and then establish the existence of Nash equilibria. Finally, a queueing system is provided to show the application of our main result.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.