Abstract

In this paper, we consider the unsteady flow of a micropolar fluid through a thin pipe with the nonzero boundary condition for microrotation. We first prove the well-posedness of the corresponding initial-boundary value problem governing the flow. Then, using asymptotic analysis with respect to the pipe’s thickness, we construct the higher-order approximation of the solution. The proposed approximation is given in explicit form, taking into account the effects of the boundary conditions, the micropolar nature of the fluid as well as the time derivative. A detailed study of the boundary layers in the vicinity of the pipe’s ends is also provided along with a numerical example illustrating the behaviour of the derived asymptotic solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.