Abstract

Endocrine disruptors interfere with normal sexual and reproductive development of numerous organisms. Widely used in several chemical and manufacturing industries, nonylphenol (NP), a potent xenoestrogen, has the potential to perturb immune system. Using rat splenic macrophages (SMΦ) as the model system, NP-modulation of lipopolysaccharide (LPS)-induced inflammatory response has been investigated. Our results demonstrate that NP (0.1–10 µM) attenuates catalase activity, reactive oxygen species (ROS) generation and nitric oxide (NO) synthesis in LPS-treated SMΦ in vitro. NP inhibition of LPS-induced nuclear factor kappa B (NF-κB) activation and pro-inflammatory cytokine gene expression corroborate well with attenuation of suppressor of cytokine signalling 3 (SOCS3). Besides, elevated expression of anti-inflammatory factors reveals inverse correlation with suppression of endotoxin-induced M1 polarization in NP pre-incubated cells. While LPS promotes, NP prevents ERK1/2 (extracellular-signa1-regulated kinase 1/2) phosphorylation and MEK-inhibitor abrogates SOCS3 expression and NO production suggesting involvement of ERK1/2 in NP inhibition of SOCS3 expression. Further, translational inhibitor cycloheximide prevents LPS-induced NF-κB activation indicating functional importance of de novo synthesis of SOCS3, at least in part, in toll-like receptor 4 (TLR4)-mediated inflammatory response. Collectively, present study provides evidence favouring participation of SOCS3 in NP modulation of inflammatory response in rat SMΦ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.