Abstract
An aromatic hyperbranched polyimide, poly(N,N,N′,N′-tetrakis(4-aminophenyl)benzidine-N,N- 4,4′-hexafluoroisopropylidene-diphthalimide) (6F-TEAPBD PI), was synthesized. Semiconductor parameter analysis on the sandwich devices using the synthesized polyimide as the active layer indicates that the polymer possesses distinct electrical bi-stable states with an ON/OFF current ratio of about 300 and a switching voltage at around 2.0 V, which could be applied as nonvolatile write-once read-many-times (WORM) memory. Mechanisms associated with the electrical switching effect are discussed on the basis of the experimental and quantum simulation results. It is suggested that the electric-field-induced charge transport from triphenylamine moieties to hexafluoropropylidene phthalimide units and the subsequent formation of charge-transfer complexes are responsible for the observed electrical memory effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.