Abstract

Abstract2D materials are increasingly being investigated for their nonvolatile switching properties as a step toward downscaling of core electronic elements. Here, the interplay between electrochemically active silver (Ag) cations and layered indium selenide (InSe), a 2D metal monochalcogenide, is investigated to demonstrate a nonvolatile switching device. Detailed microscopic characterization supported with density functional theory calculations reveals cationic filamentary‐based nonvolatile switching mechanism of γ‐InSe in a crossplanar architecture. This is electrically driven by diffusion of Ag ions through the layered InSe stack. The InSe‐based memory cells exhibit a switching ratio of ≈103 and a memory retention of >105 s. This work opens new opportunities to enhance resistive switching performances of 2D materials for next‐generation information storage and brain inspired computation using active metal diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call