Abstract

Nonvolatile manipulation of transport and magnetic properties by external electric field is significant for information storage. In this study, we investigate the electric field control of resistance and magnetization in a magnetoelectric heterostructure comprising an electronic phase-separated La0.325Pr0.3Ca0.375MnO3 (LPCMO) thin film and a ferroelectric (011)-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) substrate. In a room-temperature poled sample, the metal-to-insulator transition temperature of an LPCMO film increases and the resistance decreases with variation in the effect of the remnant strain. Meanwhile, the increase in the magnetization of the sample is observed as well. This effect would be beneficial for the development of novel storage devices with low power consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.