Abstract

Actively controlling the polarization states of terahertz (THz) waves is essential for polarization-sensitive spectroscopy, which has various applications in anisotropy imaging, noncontact Hall measurement, and vibrational circular dichroism. In the THz regime, the lack of a polarization modulator hinders the development of this spectroscopy. We theoretically and experimentally demonstrate that conjugated bilayer chiral metamaterials (CMMs) integrated with Ge2Sb2Te5 (GST225) active components can achieve nonvolatile and continuously tunable optical activity in the THz region. A THz time-domain spectroscopic system was used to characterize the device, showing a tunable ellipticity (from ‒36° to 0°) and rotation of the plane polarization (from 32° to 0°) at approximately 0.73 THz by varying the GST225 state from amorphous (AM) to crystalline (CR). Moreover, a continuously tunable chiroptical response was experimentally observed by partially crystallizing the GST225, which can create intermediate states, having regions of both AM and CR states. Note that the GST225 has an advantage of nonvolatility over the other active elements and does not require any energy to retain its structural state. Our work allows the development of THz metadevices capable of actively manipulating the polarization of THz waves and may find applications for dynamically tunable THz circular polarizers and polarization modulators for THz emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.