Abstract

Neuroimaging studies have recently provided support for the existence of a human equivalent of the "mirror-neuron" system as first described in monkeys [1], involved in both the execution of movements as well as the observation and imitation of actions performed by others (e.g., [2-6]). A widely held conception concerning this system is that the understanding of observed actions is mediated by a covert simulation process [7]. In the present fMRI experiment, this simulation process was probed by asking subjects to discriminate between visually presented trajectories that either did or did not match previously performed but unseen continuous movement sequences. A specific network of learning-related premotor and parietal areas was found to be reactivated when participants were confronted with their movements' visual counterpart. Moreover, the strength of these reactivations was dependent on the observers' experience with executing the corresponding movement sequence. These findings provide further support for the emerging view that embodied simulations during action observation engage widespread activations in cortical motor regions beyond the classically defined mirror-neuron system. Furthermore, the obtained results extend previous work by showing experience-dependent perceptual modulations at the neural systems level based on nonvisual motor learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.