Abstract

A minimal cellular automaton model is introduced to describe the collective motion of self-propelled particles on two-dimensional square lattice. The model features discretization of directional and positional spaces and single-particle occupation on one lattice site. Contrary to the Vicsek model and its variants, our model exhibits the nonvanishing optimal noise. When the particle density increases, the collective motion is promoted with optimal noise strength and reduced with noise strength out of optimal region. In addition, when the square lattice undergoes edge percolation process, no abrupt change of alignment behaviors is observed at the critical point of percolation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call