Abstract

In this article we address the problem of the depinning transition for driven interfaces in random media. We introduce a fractional Kardar–Parisi–Zhang equation with quenched noise, in which the normal diffusion term is replaced by a fractional Laplacian accounting for long-range interactions through quenched disorder. The critical values of the external driving force and nonlinear term coefficient evidently depend on the system size at the depinning transition. For a fixed value of the external driving force, the fractional order much determines the value of the nonlinear term coefficient that leads to a depinned interface. Near the depinning threshold, the critical exponent obtained numerically is nonuniversal, and weakly depends on the fractional order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.