Abstract

It is shown that, in the scaling regime, transport properties of quantum wires with off-diagonal disorder are described by a family of scaling equations that depend on two parameters: the mean free path and an additional continuous parameter. The existing scaling equation for quantum wires with off-diagonal disorder [Brouwer et al., Phys. Rev. Lett. 81 (1998) 862] is a special point in this family. Both parameters depend on the details of the microscopic model. Since there are two parameters involved, instead of only one, localization in a wire with off-diagonal disorder is not universal. We take a geometric point of view and show that this non-universality follows from the fact that the group of transfer matrices is not semi-simple. Our results are illustrated with numerical simulations for a tight-binding model with random hopping amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.